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1. INTRODUCTION

Complex analysis has its applications in many mathematical and
physical problems, but it is, in most cases, very difficult to find out the
exact representation of the functions (or solutions) to be considered in
practice. This makes it important to search for effective ways of
approximating the functions (or solutions) for which only finite data are
given.

The Lagrange interpolating polynomial is unsuited for this task since
one cannot ensure its convergence in all cases (see [3]). At times, a
modification of the complex Lagrange interpolating polynomial may be
used successfully (see [5]), but there is no general formula for this
approach.

Ahlberg [1] uses analytic splines to approximate an analytic function on
the unit disc, but these approximants only converge uniformly on compact
subsets of the open disc.

Here we use the complex harmonic splines. They are obtained by using
the Poisson integral, with the boundary function an interpolating or
pseudo-interpolating complex spline. The complex harmonic splines con
verge uniformly on the closed unit disc to the analytic function being
approximated as the mesh size tends to zero.

One would hope that the approximating functions has many of the
properties of the function being approximated, e.g.,

(a) they are open mappings (conservation of domain);

(b) they are one-to-one mappings.

We prove that these properties do indeed hold for the complex harmonic
spline in case the mesh size is sufficiently small.
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COMPLEX HARMONIC SPLINES 113

We illustrate by an example (see Fig. 1 at the end of this paper) that the
complex harmonic spline approximates conformal maps in a satisfactory
manner. Besides, a complex harmonic spline only consists of elementary
functions.

2. DEFINITIONS AND NOTATIONS

We denote by

U:= {Z: IZI < I}

the (open) unit disc, and by r its boundary.
We denote by y:'(A) the family of complex splines of degree n with

(ordered) knot sequence A = (ZI>"" ZM)' Here, each Z)s a point in r. We
-- ~ .

use r j : = ZjZj + 1 for the arc between the two points, and set Z M + 1 : = Z 1 .

We denote by 2'(F) the quasi-interpolant operator into complex splines
introduced in [2]. We use Ac(n)(r) for the class of functions in c(n)(r)
with an absolutely continuous nth derivative.

Let D be a simply connected domain, with y its boundary. A real
function UE C(2)(D) is said to be harmonic in D if it satisfies Laplace's
equation Au =0 there. We call a function a complex harmonic function on
D if it is a finite complex linear combination of harmonic functions in D,
and denote the totality of all such functions by H(D). These complex har
monic functions share with the (real) harmonic functions many properties,
such as the mean-value theorem, the maximum modulus principle, Poisson
formula, the Schwarz theorem, etc. We define

and

3. RESULTS

The complex harmonic function

P(Z) = 2~r' p(O Re G~ ~) dO (1)

is said to be a complex harmonic spline if p belongs to y:'(A). The family of
such functions is denoted by SH( U).
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...-
Since p(0 =pi0 E 11: n' 'E F j =ZjZj+ I, j = 1, M, the expansion around

the point Z in the '-plane is as follows:

(2)

(3)k=O,...,n

a~j) is obviously independent of Z.
Let (Ti/-I) =ai/) - ai/-I), k = 0,..., n, (TkO) = (Tkn ) = akl ) - akn ), k = 0,..., n. By

induction we have

(T(j - I) = ( _ l)k (n) (T(j - 1)(Z. _ Z)k
n-k k n ) '

and
M

L (T:!-I)(ZJ-Z)k=O,
j~ 1

k=O, ...,n. (4)

From (1), P(Z) can be represented as follows:

(5a)

where

(5b)

(5c)

where «Jj.j+ I(Z) is the measure of angle from vector ZZ j to ZZ j+ 1 and

t/Jj.j + 1(2) is the measure of angle from vector 2Z j to ZZ j + I, Z=Z - I.

We observe that

.1. (Z) _ (xj - x)(Xj + 1 - xl + (Yj- Y)(Yj+ 1 - y)
cos 'I'J.J + I - IZ - ZA IZ - Zj+ 11

=:!I(Z,j) (5d)
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where Z = x + iy, Zj = Xj + iYj' Therefore, we have

({Jj.j+ I(Z) = cos -I fl(Z,j)

t/!j,j+ I(Z) = cos -I f2(Z,j).

We can also write P1(Z), P2(Z) in the following forms:

PI(Z)=-ZI. I piZ) In z~+~-zz,
m j~1 J

P2(Z) = 2-
1
. f piZ)ln Zj+I-~Z.

m j~1 Zj-Z

(5f)

(5g)

(6)

Whichever branches of the logarithm are chosen, we should remember that
the imaginary part of In((Zj+I-Z)/(Zj-Z)) is ((Jj,j+I(Z) and
Im(ln((Zj+I-Z)/(Zj-Z))) is t/!j,j+I(Z),

We know ([Z, Theorem 3J) that any function belonging to Ac(n)(r) can
be approximated by complex spline functions.

Let 2 be the operator introduced in [2J, p = 2(F), where FE Ac(n)(r),
then (see [2J)

We shall prove the following:

O::;;s::;;n. (7)

THEOREM 1. Let F be analytic in U, FE ABH(n)( 0), n ~ 2, and let
p = !l'(F) be the pseudo-interpolation spline function. Then the complex har
monic spline

1J2

" (' + Z)P(Z) =211: 0 p(O Re ,_ Z dO

approximates F in U as follows:

IP(Z) - F(Z)I ::;; ~: w(F(n); ILl I) ILl In,

IPz(Z) - F'(Z)I ::;; (~K2 +K1 ILlI) w(F(n); ILlI) ILlln- 2
,

ZE 0 (8)

ZEO (9)



116 HAN-LIN CHEN

IPz(Z)1 = IPz(Z)-Fz(Z)1

~i(Kz+KIILlI)w(F(n); ILlI) ILll n
-

Z
, ZED. (10)

w(f; ILlI) is the modulus of continuity off on r, where Ko, K h K z are con
stants given in (7).

This theorem tells us that if ILl I tends to zero, the function P and its
derivatives converge uniformly to F and its derivatives respectively on the
closed disc IZ\ ~ 1.

The proof of Theorem 1 is as follows.
Using the maximum modulus principle and (7) we have (8). Now

where

q>(C, Zo) = (p'(O - £'(0) - (p'(Zo) - F'(Zo))

1q>(C, Zo)1 = IJ...... (p(Z)(t) - pZ)(t)) dt\
Zo(

..-
~ max !p(Z)(t) - pZ)(t)1 IZo'l

lET

..-
where IZo'l is the arc length from Zo to ( on r.

Hence we have

where 1\ is one of the half circles Y1 and yz such that

If q>(~ Zo) dcl = Max {It q>v(~ Zo) d(l, It q>(~ Zo) dcl}
f l ( Zo YI ~ Zo Y2 C Zo

)it = {Z I Z=ei9
, O~O~n},

1z= {Z I Z=ei9
, n~O~2n}.

'I denotes )it or 1z, and in either case we stipulate that \z;;(\ ~ n. Since.-
1~ IZoW\Zo - 'I ~ n12, therefore,
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n
IPz(Z) - F'(Z)I ~ - Max Ip(2)(t) - F(2)(t)1 + Max /p'(t) - F'(t)1

2 fEr fET

and from (7) we have (9).
Since

IPz(Z)-Fz(Z)1 ~~ Sup If ljJ(', Zo) d'i
2n ZoET T '-Zo

where

ljJ(', Zo) = ('p'(O - F'(O) - (Zop'(Zo) - ZoF'(Zo))

IljJ(', Zo)1 ~ Max{ Ip'(O - F'(OI + Ip(2)(O - F(2)(OI} IZJI
(ET

we have

IPz(Z)/ ~!.:2 Max{lp'(O -F'(OI + Ip(2)(O -F(2)(OI}
(ET

117

and from (7) we obtain (10). Q.E.D.

Remark 1. Results similar to those in Theorem 1 can be obtained when
!f(F) is replaced by I(F), the interpolating complex spline (for the case of
equidistantly spaced node points, see [1]).

COROLLARY. Let F(Z) and P(Z) be defined as in Theorem 1. Then

ZE (J,j= 1, n-1

where w=w(F(n); ILlI), Kj , Kj + 1 are constants given in (7).

The following theorem gives conditions under which the complex har
monic spline is an open mapping.

THEOREM 2. Let F be analytic in V, FE ABH(n)( (J), n ~ 2. Assume that
F(1)(Z) # 0, Z EO, choose ILII sufficiently small that

Wi/in-I) ILII < [Min 1F'(Z)I/n(K2+2KdJ I
/ in-2), n>2

ZET

w < Min 1F'(Z)I/n(K2+ 2K I ),
ZET

n=2
(11 )
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where w = w(F(n J; ILl I) is the modulus of continuity of F(n J on r. Set

1 f27< (' +Z)P(Z) = 2n 0 p(O Re ,_ Z de,

with p = ff(F). Then the Jacobian J of P is positive on D.

Proof Let

fl=(~K2+KIILlI)wILlln-2, ~=~(Kl+KIILlI)wILlln-2. (12)

Since ILlI < 2, from (9), (10) we have

J(Z) = IPzI2 -IPzI2
~ (IF'(Z)I- fl)2 - e.

From (11), we obtain J(Z) > O.

It is easy to prove the following

Q.E.D.

(13)

(14)

LEMMA. Let y be a closed Jordan curve; y is a homeomorphic image of r,
y = f( r),fE C(1)(r). If f'{Z) "# 0 for Z E r, then

'- . f If(Zd-f(Z2)I>omf'- In ,
Z,.ZzET ZI - Z2

M ·- S If(Zd-f(Zz)!<f'- up 00.
ZI.ZzET 2 1-22

THEOREM 3. Let D be a simply connected domain, aD = y a closed Jor
dan curve with bounded curvature, W =F(Z) a conformal mapping of U onto
D, and FE AH(nJ( 0), n ~ 2. .if ILl I is so small that

w < mf/n(Kz+ 2Kd, n = 2;

w I(n-2J ILII < (mF/n(K1 +2Kd)I(n-2 l, n > 2

where w=w(F(n); 1,11), mFdefined as in (13), then thefunction

P(Z) = 2~r' ff(F) Re (~ ~ ~) de

maps U onto a simply connected domain Dp • This mapping is 1-1 and sense
preserving; moreover,

in Caratheodory's sense.

lim Dp=D
ILII ~O

(15)
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Remark 2. Theorems 2 and 3 remain valid if !t'(F) is replaced by I(F)
(see Remark 1).

Proof of Theorem 3. Since FE c(n)( D), y = F(r) is smooth, arg F'(O is
continuous in D and arg F'(O = <p(O - arg' - n12, where <p(O =
arg(dF(eiO)ldO). Let S denote the arc length of y. Then

f
02 (f02 ) 1/2(f02 ) 1/2IS2-SII = 1F'(eiO)1 dO~ /F'(eiOWdO dO

0, 0, 0,

~ K 1(0 2 - 8d l/2
.

Let K(0 be the curvature of y at points C. From the hypothesis, K(n~

Ko < 00, where Ko is a constant, hence

Iarg F'(C2) - arg F' (, d/

If
S2 d<p I

= Sl dSdS+(Ol-02) ~KoIS2-SJ!+I02-011

~ KoK I 102- 0111/2 + 102 - OJ! ~ K 102 - 0111/2
.

Since F'(Z) i= 0 for Z E U, In F' is analytic in U, and there exists a constant
K' such that

[4, Chap. 9, Sect. 5, Theorem 4, 5]; therefore In F' is continuous and hence
bounded in D. We then conclude that

P(Z) i= 0, ZEr;

hence from the lemma we have mF>O.
The directional derivative of a complex harmonic function G can be writ

ten as oGlolo =GzeiO +Gze - iO, and this is a complex harmonic function.
From Theorem 1 we obtain

l
oP OFISup 00 - oe ~ Sup IPz - F'I + Sup IPzl ~ 11 + ~

Ze 0 ZeF ZeF

where 11 and ~ are defined by (12).
From (9), (10) we obtain

640/43/2-2
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therefore,
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from (14). 11 +e< mF' We conclude that

i.e., W = P(Z) is a homeomorphic mapping. Note that

mF~min iF(Z)I·
ZEI

From (17) and (14) we obtain inequalities (11). Theorem 2 tells us

(17)

J(Z) >0 for ZE 0. (18)

The mapping W = P(Z) from U onto D p is sense-preserving [4J.
Since the Jacobian is positive for Z EO, the mapping W = P(Z) is open;

thus D p =P( U) is a domain, and no interior point of U can be mapped
onto the boundary of D p. Hence the boundary of D p must be the image of
r. Since (16) is valid on 0, P is a homeomorphic mapping from r to
y= aD p. We thus conclude that y is a closed Jordan curve and Dp is a
simply connected domain.

If Z E r, from Theorem 1 we have

therefore (15) is proved. Q.E.D.

Since Pz , P:z are continuous in 0, denote the complex dilatation by
x(Z):= Pz(Z)/Pz(Z), ZE 0, and

D(Z)= [IPz(Z)! + !Pz(Z)!J/[\Pz(Z)!-jP:z(Z)!J.

We can prove the following

THEOREM 4. Let F be a conformal mapping of U onto D, FE AH(n)( 0).
Let P be a complex harmonic spline defined as in Theorem 1, and choose ILlI
so small that

n~2. (18)
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FIG. 1. This is the image of a family of curves which consists of concentric circles /ZI =
r = (j -1)jl0 (j "'" 2, 10) and radii lJ = 2(j - 1) njlO (j = 1, 10) under the mapping W = (I/2n)
Jl'p(O Rem +Z)/(( -Z)] dO.

Let e be any positive number satisfying the relation

Then P satisfies the Beltrami differential equation

(19)

(20)

and X is continuous in O. Further, P is a K-quasiconformal mapping with
dilatation

D(Z)<K= M +e,
M-e

where

(21)

M:= Sup IF'(Z)I.
Zer

Proof From (8), (9) we have

ID(Z)I s:: IF'(2)1 + '1 + ~
""" IF'(2)1- '1-~'
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with 'fI, ~ as defined by (12). From (18), (19)

M+A M+e
ID(Z)\ < M _ A< M _ e= K

and

Then (21) is proved.
Now A<mF , (14) is valid, from Theorem 3, W=P(Z) is a

homeomorphism and the function P satisfies (20); obviously, x(Z) is con
tinuous in 0. Q.E.D.

Figure 1 is a set of curves which are the image of radii and concentric
circles under the mapping

112
" (' +Z)W=P(Z)=2n 0 p(ORe '-Z dO,

where p is the interpolating complex cubic spline function for F(Z) =
(Z-3)4+8/(Z-5)+12/(Z-5)2, the knots of the cubic spline pare
Z - i(2"j/20) . - 1 20 d (Z) - F(Z) .- 1 . 20j - e , ] - "", ,an P j - j , ] - , ... , .

The boundary curve is W = P(Z), \Z\ = 1. We see that the two families
of curves are almost perpendicular. The reason is that since W = F(Z) is a
conformal mapping on 0, then W = P(Z) is almost a conformal mapping
on D. The theoretical demonstration of this fact is given in the proofs of
Theorems 1-4.
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